CCGB Meeting Agenda, March 17, 2006

1. Approval of Minutes
2. Undergraduate Announcements
3. Math 190/191 Discussion
4. Academic Integrity
5. What Constitutes an ENGRI Course?

CCGB Minutes, February 17, 2006

Ex-Officio: B. East, D. Maloney Hahn, R. Robbins, L. Schneider, F. Shumway, M. Spencer
Other: T. Owens, C. Pakkala

Approval of Minutes: The minutes of the February 10, 2006 CCGB Meeting were approved with modifications.

Undergraduate Announcements: D. Gries announced that the summaries of the online evaluations are to be available online on 3/1/06. Anyone with a net ID will be able to look at them for all of the courses.

Minimum Hours for Good Standing: R. Robbins stated that the Advising Office sent out academic actions for students with less than 14 credit hours. The students are in good academic standing otherwise and are proceeding well toward their major. They brought the issue to ASPAC, and the members unanimously agreed to reduce the number of required credit hours for good standing for first and second year students from 14 credits to 12 credits. Proposal: To reduce the number of credit hours for second semester freshmen and sophomores from 14 to 12 credits. Vote: 11 in favor (unanimous).

Extramural Study for Students on Voluntary Leave of Absence: R. Robbins reminded the CCGB members that extramural study at Cornell is available for those students who are on voluntary leaves only. Those students on academic or medical leave cannot do that. He requested that the CCGB members spread the word in their departments.

Change in Credits for a 4 on AP Biology: A. Zehnder stated that engineering students who receive a 4 or 5 on the AP receive 6 credits. In CALS students get a different number of credits (4 credits for a 4 on the AP and 8 credits for a 5). The issue is whether engineering students should get the same number of credits as those in CALS. T. Owens said that the reason for changing the number of credits awarded was to make the number of credits the same for biology majors and non–biology majors. CALS ran into a lot of problems for students who in their junior year wanted to be biology majors and needed to take the AP exam to get more credits. They would prefer not to give credits for introductory biology. One of the issues that raises for non-bio majors is that they need 6 credits of introductory biology to satisfy the distribution requirement. Students can take any of the introductory biology courses. If they get an AP 4 they need to take 1 biology class. When CALS made the changes, they were told that the department that offers the course makes the decision for the university of how the AP courses are handled university-wide. B. East suggested that the College of Engineering might be allowed to be more restrictive. L. Lion asked what biology majors are using the 8 credits for. T. Owens replied that it exempted them from 1 year of introductory biology. He wondered what fraction of engineering students come in with biology credit. F. Shumway replied that approximately a quarter of them have it. L. Pollack asked how the engineering students would use the biology credits. R. Robbins responded that they would satisfy a distribution. J. Bartsch stated that the Biomedical Minor has a lot of rules. He feels that Biology 101-103 is the best course sequence for students and is the most relevant for follow up for engineering courses.

T. Owens clarified the distinction between biology sequences: Biology 101-104 is the traditional lab/lecture sequence and is meant for biology majors. The course evolves over the years, making it more quantitative. Biology 105-106 is equivalent to Bio 101-104 in terms of material covered during the year. It is an autotutorial but has labs and one-on-one exams. Someone with a good biology background and good time...
management skills would find it an excellent course. The autotutorial allows students to be a bit more flexible with their time. There is an 8-week summer sequence, BIO 107-108 which covers the same materials. BIO 109 & 110 is a non-major sequence. It is more descriptive rather than mechanistic. The expectations for students are much different. They are informed about science but the course doesn’t go into underlying details.

B. East questioned what the impact would be of Engineering going with what CALS does. D. Maloney Hahn replied that giving the students 4 credits for 4 on the AP won’t upset anyone. The students would like 8 credits for obtaining a 5 on the AP. Most pre-meds can get the 8 and then take an upper level biology course anyway, which would satisfy whatever school they continue their studies at after Cornell. B. Isaaks wondered what biology course our students currently take. D. Maloney Hahn replied that usually those with scheduling problems take BIO 105-106. We almost always advise our students to take BIO 101-103 or BIO 105-106. J. Bartsch asked about the differences in content between BIO 109 & 110. T. Owens replied that BIO 109 covers ecology, evolution, diversity, a little genetics, and mostly organismal biology. BIO 110 is cellular and molecular. If Engineering required 1 course in biology, it might be BIO 110. J. Bartsch said that some of the BEE students take BIO 109/110, but they try to get them to take BIO 101-104. R. Robbins stated that Engineering will switch to what CALS is doing; this will help the pre-med students. T. Owens said that if Engineering is considering making biology a requirement, the Biology Department will need a lot of notice.

Student Experience Survey: B. East stated that the Student Experience Committee is a subcommittee of the CCGB. The Committee has done a lot of work with discussing issues related to the student experience. The survey is a culmination of those discussions. They discussed the plans for the survey with the Institutional Research and Planning Office and collaborated with the Survey Research Institute (SRI), who helped design and administered the survey. SRI develops and administers surveys all over campus utilizing scientific survey methodology. L. Schneider and R. Robbins have done yeoman’s work on the survey, and they and the committee should be thanked. The plan is to present the survey to the Dean’s group, then to directors and chairs, and then it will be available to faculty online or via hard copy.

R. Robbins said that previous surveys done over the past 15 years have pointed to similar student issues in the college. Heavy workload, competition among students, difficulty of the curriculum and a curved grading system are the primary issues. The current survey focused on 4 basic things: 1) how students allocate their time, 2) knowledge and/or participation in programs or organizations, and use of other resources in the College, 3) stressors and experiences, 4) perceived quality of faculty instruction and TA interaction. L. Schneider stated that they received over 900 responses from the engineering students, and they were pleased with the level of participation from subgroups. Females and those with slightly higher GPAs responded more than the other students. Handouts of the Powerpoint presentation and a summary of the survey results were provided to the CCGB members. General findings indicated that those reporting more stress used AEWs for support, and females and underrepresented students used AEWs and peer tutoring more often. Male students were more likely to be involved in student project teams, which may include teams in courses. The perceived stress that was reported in the presentation was that perceived only by those students who were highly or extremely stressed, not by those who were moderately stressed. Including the moderately stressed students increases the percentages even more. Additional information included that approximately 615 of the students felt that it is more important to receive a good grade than to learn the course material. A. Center stated that a course grade is a metric, and he wondered how learning the course material could be a metric. He questioned what the students are thinking. L. Schneider wondered if there is a disconnect between learning the material and getting a good grade. L. Lion said that some students say they have poor test taking skills but they say that they know the material. D. Gries asked if there are differences between the class evaluations due to what grades students got in the courses. L. Schneider replied that she did not know, but the possibility could be examined. A. Center asked how we are doing compared to other institutions. L. Schneider replied that she did not know, as there was no relevant data in the literature and this is the first such survey of Engineering students specifically that we are aware of. She suggested that we could ask for that information (but might not get it) from other institutions. L. Pollack suggested that graduate students could be asked about their undergraduate experience at other institutions. D. Gries indicated that this would be a sample only of those undergraduate experiences of students who went on to graduate school. R. Robbins stated that the entire report is available for anyone who wants it. A. Center asked what it means to ask students if they want to take classes outside their major. He wondered what the
students would do with their flexibility if the restrictions were relaxed. L. Schneider responded that there were several items on the survey that asked about students’ perceptions of curriculum flexibility, the ability to take courses outside of the major, and the ability to study abroad. L. Pollack suggested that the students be asked how well they feel prepared for a career in their major. This might be a question for alumni or seniors. She wondered if the students feel that they had too much engineering. R. Robbins responded that the students indicated that they felt very prepared to do engineering outside of Cornell. E. Fisher said that their MAE students feel that they got too much engineering. B. East stated that one thing the Curriculum Committee is looking at is what other institutions are doing, along with their ranks and what their curriculum looks like. R. Robbins said that this survey is just one measure of students’ perceptions and experiences, and that there are likely other measures within courses within engineering that can support or not support the survey results. S. Baker expressed his puzzlement about how the survey information is viewed. He wondered if there are specific problems that need to be solved. The survey results seem like predictable outcomes for students at this institution. It sounds like we’re doing this because we’re curious as to what our students are doing. L. Schneider said that the subgroup comparisons are the most valuable. They give information about which students are feeling less connected and less prepared. R. Robbins added that this presentation was just a reporting of the data and the Student Experience Committee is working on specific recommendations. B. East said that we hope the data inform people about what other things are happening in the college. We see a lot of really stressed students who feel that they can’t cope. The national trend data is that the number of student visits to counseling and psychological services is going up all around the country, as is the number of suicides and suicide attempts. We need to know how many members of the student body this affects. The stress level is definitely increasing, both here and nationally. Students aren’t coping as well as they used to. R. Robbins stated that the process involved in the development of this survey included open-ended, qualitative focus groups, the identification of patterns from that data, and the development of survey items; therefore the survey is more valid and scientific this time, but is also showing trends from previous surveys.

The meeting adjourned at 8:56 a.m.